圖像清晰度是衡量圖像質(zhì)量的一個(gè)重要指標(biāo),對(duì)于相機(jī)來(lái)說(shuō),其一般工作在無(wú)參考圖像的模式下,所以在拍照時(shí)需要進(jìn)行對(duì)焦的控制。對(duì)焦不準(zhǔn)確,圖像就會(huì)變得比較模糊不清晰。相機(jī)對(duì)焦時(shí)通過(guò)一些清晰度評(píng)判指標(biāo),控制鏡頭與CCD的距離,使圖像成像清晰。一般對(duì)焦時(shí)有一個(gè)調(diào)整的過(guò)程,圖像從模糊到清晰,再到模糊,確定清晰度峰值,再最終到達(dá)最清晰的位置。
常見的圖像清晰度評(píng)價(jià)一般都是基于梯度的方法,本文將介紹五種簡(jiǎn)單的評(píng)價(jià)指標(biāo),分別是Brenner梯度法、Tenegrad梯度法、laplace梯度法、方差法、能量梯度法。
Brenner梯度法:
計(jì)算相差兩個(gè)單元的兩個(gè)像素點(diǎn)的灰度差:
FBrenner=∑M∑N(f(x+2,y)−f(x,y))2
式中 (f(x+2,y)−f(x,y))2>Threshold算法準(zhǔn)確性取決于閾值的選取。
Tenegrad梯度法:
采用sobel算子分別提取水平和豎直方向的梯度:
FTenegrad=∑M∑N|G(x,y)|
G(x,y)>Threshold
G(x,y)=Gx(x,y)2+Gy(x,y)2
sobel算子模板如下:
Gx=14⎡⎣⎢−1−2−1000121⎤⎦⎥∗I
Gy=14⎡⎣⎢−101−202−101⎤⎦⎥∗I
Laplace梯度法:
laplace梯度函數(shù)與Tenegrad基本一致,只需要用Laplace算子替代sobel算子即可:L=16⎡⎣⎢1414204141⎤⎦⎥∗I
方差法:
聚焦清晰的圖像比模糊圖像有更大的灰度差異,可用方差函數(shù)作為評(píng)價(jià):Fvariance=∑M∑N(f(x,y)−E2)
式中E為整幅圖像的平均灰度值,該函數(shù)對(duì)噪聲敏感。
能量梯度法:
能量梯度函數(shù)適合實(shí)時(shí)評(píng)價(jià)圖像清晰度:
FBrenner=∑M∑N((f(x+1,y)−f(x,y))2+(f(x,y+1)−f(x,y))2)
實(shí)例代碼:
//方差法
region_to_mean(ImageReduced, Image, ImageMean)
convert_image_type(ImageMean, ImageMean, 'real')
convert_image_type(Image, Image, 'real')
sub_image(Image, ImageMean, ImageSub, 1, 0)
mult_image(ImageSub, ImageSub, ImageResult, 1, 0)
intensity(ImageResult, ImageResult, Value, Deviation)
//拉普拉斯梯度函數(shù)
laplace(Image, ImageLaplace4, 'signed', 3, 'n_4')
laplace(Image, ImageLaplace8, 'signed', 3, 'n_8')
add_image(ImageLaplace4, ImageLaplace4, ImageResult1, 1, 0)
add_image(ImageLaplace4, ImageResult1, ImageResult1, 1, 0)
add_image(ImageLaplace8, ImageResult1, ImageResult1, 1, 0)
mult_image(ImageResult1, ImageResult1, ImageResult, 1, 0)
intensity(ImageResult, ImageResult, Value, Deviation)
//能量梯度函數(shù)
crop_part(Image, ImagePart00, 0, 0, Width-1, Height-1)
crop_part(Image, ImagePart01, 0, 1, Width-1, Height-1)
crop_part(Image, ImagePart10, 1, 0, Width-1, Height-1)
convert_image_type(ImagePart00, ImagePart00, 'real')
convert_image_type(ImagePart10, ImagePart10, 'real')
convert_image_type(ImagePart01, ImagePart01, 'real')
sub_image(ImagePart10, ImagePart00, ImageSub1, 1, 0)
mult_image(ImageSub1, ImageSub1, ImageResult1, 1, 0)
sub_image(ImagePart01, ImagePart00, ImageSub2, 1, 0)
mult_image(ImageSub2, ImageSub2, ImageResult2, 1, 0)
add_image(ImageResult1, ImageResult2, ImageResult, 1, 0)
intensity(ImageResult, ImageResult, Value, Deviation)
//Brenner梯度法
crop_part(Image, ImagePart00, 0, 0, Width, Height-2)
convert_image_type(ImagePart00, ImagePart00, 'real')
crop_part(Image, ImagePart20, 2, 0, Width, Height-2)
convert_image_type(ImagePart20, ImagePart20, 'real')
sub_image(ImagePart20, ImagePart00, ImageSub, 1, 0)
mult_image(ImageSub, ImageSub, ImageResult, 1, 0)
intensity(ImageResult, ImageResult, Value, Deviation)
//Tenegrad梯度法
sobel_amp(Image, EdgeAmplitude, 'sum_sqrt', 3)
min_max_gray(EdgeAmplitude, EdgeAmplitude, 0, Min, Max, Range)
threshold(EdgeAmplitude, Region1, 20, 255)
region_to_bin(Region1, BinImage, 1, 0, Width, Height)
mult_image(EdgeAmplitude, BinImage, ImageResult4, 1, 0)
mult_image(ImageResult4, ImageResult4, ImageResult, 1, 0)
intensity(ImageResult, ImageResult, Value, Deviation)